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MOLECULAR CLEmS 2. AN ANALOGUE OF KAGAN’S ETHER AS A MOLECULAR CLEFT: 

SYNTHESIS AND CLATHRATE FORMATION WITH ETHYL ACETATE 

Michael Harmata* and Charles L. Barnes 
Department of Chemistry University of Missouri-Columbia, Columbia, MO 65211 

Summary: A convenient synthesis of 5~,8a,14a,17~-5,6,8,9,14,15,17,18-octahydro-5,17:8,14-diepoxy- 
dibenzo~,&enzo[1,2-a:4,5-d]dicyclooctene (2) is described. This molecular cleft represents the parent of a new 
class of chiral molecular tweezers. It forms a clathmte with ethyl acetate which is stable even after 12 hours at 0.1 

Torr. The structure of 2 was established by spectral and X-ray data. 

Recently, we reported the development of methodology for the synthesis of analogues of Kagan’s ether, 1. 1 ,2 

In that paper, we cited 5a,8a,14a,17a-5,6,8,9,14,15,17,18-octahydro-5,17:8,14-diepoxydibenu, &‘]benzo 
[ 1,2-a:4,5-~‘]dicyclooctene 2 as an appropriate target for the study of molecular clefts3 related to 1. Compound 2 

represents the parent of a new class of molecular tweezers which we are in the course of 

preparing and studyingP In this paper we report the synthesis of 2, and its clathrate formation with ethyl acetate. 
After much experimentation we discovered that the methodology which we had developed previously would not 

work well for the preparation of 2. We thus reevaluated an approach developed for the synthesis of 1 as outlined in 
Scheme 1. Metalation of the readily available dimethyl acetal of ortho-bromophenylacetaldehyde,5 alkylation with 

phenylacetaldehyde, and acid catalyzed ring closure affotded acetal5 in fair yield. 
previously described gave 1 in good yie1d.l 

Cyclization of this compound as 
This methodology proved to be the key to the facile preparation of 2. 

The synthesis of 2 is shown in Scheme 2. Commerci ally available 2,5-dibromo-p-xylene 6 was oxidized 
with chromic acid and converted to the acetal7 in 36% overall yield.6 While this sequence proceeded in low yield, 
it was easy to perform. Conversion of 7 to 8 via a hydrolysis, homologation with methoxymethyl triphenyl phos- 
phorane7 and acetal formation proceeded in 78% overall yield after chromatography and recrystallization. Metal- 

halogen exchange with 4.3 equivalents of t-BuLi followed by alkylation with phenylacetaldehyde gave 9 in 35% 
yield after flash chromatographic purification.8 Ring closure with tosic acid followed by treatment with SnC14 
produced 2 in 50% after chromatography. No optimization has yet been attempted to improve this sequence. 
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(a) 1. BH3.THF. O”G@C, 8.5 h: 2. FCC (ref. 5); 3. Me-OH, (Me0)3CH. NH4Cl. reflux, 3 h. (b) n-BuLi, THF, -78OC, 25 min. 

then PhCH2CHO; 2. TsOH, CH2Cl2, -20% overnight. (c) SnCb, CH2CI2, -78Oc. 1.25 h. 

Scheme 1 
The gross structure of 2 was easily established by its spectral characteristics. The 300 MHz lH NMR 

displayed a six proton multuplet at 7.14 - 7.03 ppm. a two proton doublet at 6.93 ppm (J = 7.3) and a 2 proton 
singlet at 6.70 ppm. Two two proton doublets at 5.25 ppm and 5.18 ppm (J = 6.1) were assigned to the protons at 

carbons 5,8,14, and 17 in accordance with assignments made for l.g Similarly, the exo and endo protons 

attached to carbons 6,9. 15, 18 were observed at 3.49 ppm (dd, J = 6.2, 15.7) and 3.46 (dd J = 6.3, 16.3), 

respectively. Other data provided further confirmation of the structure of 2.1° 

d 

so%’ 
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(a) 1. CrO3, (ref. 6); 2. MeOH, H2SO4. refiux, 3.5h. (b) 1. 1N HCI. reflux. 2.5h; 2. Ph3PCHOMe, THF, 25’C: 3. MeOH, H2So4, 

reflux, 12 h. (c) 4.3 eq. t-BuLi. THF, -78oC. then PhCH2CHO. (d) 1. cat. T&H, CH2Cl2, -78OC. 10 min., to 25OC, 1 h; 2. SnC14. 

CH2C12, -78oC, 30 min. 

Scheme 2 

.Support for the structural assignment and confirmation of the relative stereochemical relationships in 2 were 

established by X-ray analysis. l1 ThestructureisshowninFigure1.12 Noteworthy is the hole created as two 

molecules of 2 pack nearly face to face in the lattice. The dimensions of this cavity appears to be large enough to 

contain a guest (ca. 10.7A x 7.3A x -1.13 Indeed. ethyl acetate was apparently occluded within the channels of 

the crystal lattice of 2. NMR analysis indicated a stoichiometty of ca. 2.7:1 (2:ethyl acetate) for the clathrate. l4 

This ratio remained constant even after 12 hours at .l Torr.13 The stability of the inclusion complex is 



1827 

Figure 1. Crystal Stroctun of 2 (29S” K). Side (left) and top (right) projections are shown. 

noteworthy. At room temperature, disorder made it impossible to unambiguously define the orientation of the 

solvent molecule though it appeared to be located within the hole shown in Figure 1. X-ray data accumulated at a 

lower temperature (163’K) refined better and though still disordered, a reasonable location for the ethyl acetate 

could be formulated as shown in Figure 2.l la15 The carbon-oxygen single bond of the solvent on the center of 
symmetry of the hole in the crystal lattice. This inclusion pattern suggests that symmetrical E-alkenes may be good 
candidates for clathrate formation and that this lattice structure may be useful for separating certain E/Z mixtures of 
alkenes; an idea we are currently trying to test. 

Figure 2. Crystal suocttue of Zethyl acetate clathratc (163“ K). Side (left) and top (right) projections are 

shown. see reference 15. 

As a hybrid of structural principles delineated by Toda.16 Hart,17 and Weber18 for clathrate forming 
molecules, 2 and its congeners should provide further fascinating results in the area of solid state inclusion. 19 

Further synthetic studies, clathrate preparations,“) and solution phase binding experiments21 are in progress and 
will be reported in due course. 22 
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